APS Vision and New Initiatives

J. Murray Gibson for 3-way meeting 06/02/03

38 functioning beamports (25ID, 13BM) 68 total available

...only 4 ID beamports are not yet committed

APS Users Today

Badged Users

2400 unique users in 2002

Demographics of APS Users (2002)

Our first centralized general-user program

Proposal Review Panels									
Instrumentation	Imaging/ Microbeam	Macromolecular Crystallography	Scattering Applied Materials	Scattering Condensed Matter	Scattering Chem/Biol/Environ	Small Angle Scattering (SAXS)	Spectroscopy (EXAFS)		
Eric Dufresne, Chair	Chris Jacobsen, Chair	Karl Volz, Chair	Paul Fuoss, Chair	Joel Brock, Chair	Neil Sturchio, Chair	Larry Lurio, Chair	Joe Woicik, Chair		
Wilfried Schildkamp Sarvjit Shastri	Barry Lai John Miao Mark Rivers	Craig Ogata Amy Rosenzweig	I. Cev Noyan Carol Thompson Robert A.Winholtz	John Hill Ben Larson Young S. Lee Guoyin Shen Surendra Saxena	David Tiede Angus Wilkinson	Andrew Allen Jyotsana Lal David Londono Pappannan Thiyagarajan	Simon Bare Lisa M. Miller Sue Mini Matt Newville		

Proposal Review Panels

Beamtime Allocation Committees

356 proposals submitted for winter run 2003-02

- ~ 2000 shifts allocated
- ~ 46% success rate

Continuing performance improvements

• Top-up operation

- -Low emittance
- -Stable optics

Improved beam stability

Canted Undulators

while maintaining and improving reliability over 98% ..

Imaging nanostructures...

Sn₂O₃ nanobelts – Z. Cai

Advanced Photon Source

Argonne video turns ant into a science celebrity

Westneat, Lee et. al..

Phase-enhanced imaging

Center for Nanoscale Materials

 Unique, versatile instrument to study individual nanostructures (30 nm spatial resolution)

imaging

Quantitative atomic-scale structure, strain, orientation

Sensitive trace element and chemical state analysis
 Ability to penetrate overlayers, environments, fields

State Contribution FY'02 = \$2M, FY'03 = \$17M Building construction begins Summer '03 DOE approves CD-0, anticipated funding \$30-40M

and Nanotechnology

http://nano.anl.gov/

LEUTL has SPIRIT

- Experiments ongoing to use single photon ionization from LEUTL source for materials science
- Proposal submission to BES for upgraded, independent facility (decision point FY '04)

APS to provide undulators at ~\$50M responsibility Steve Milton is the ANL LCLS Project Director

Current Activities

- Taking more responsibility for BES sector operations
 - 1,2,3,4,11,12, partial 7,8,20...
 - X-Ray Operations and Research replaces SRI CAT
 - Offer 80% time for competition on sectors, >50% GU
 - Encourage specialization
- Developing flexible partnerships
 - Partner and General Users
- New Science Advisory Committee for APS
- Shenoy-Sinha panel on future new science directions for the APS
 - Help determine direction of new beamlines
- Providing enhanced user support
 - Detector pool, beamline controls, ES&H, engineering..

Budget and staffing

■ Temporary■ Union

□ Technical

■ Executive
■ Administrative

100

2000

2001

2002

2003

Increased emphasis on user support

Moved ~7% of resources towards user activities in 2002

Expect future growth in staff and budget for user support other activities need to remain stable and well-supported

Advanced Photon Source **Upgrade Path**

Defining the State-of-the-Art Presented to BESAC Subcommittee on 20-year **Facilities Roadmap February 23, 2003**

By J. Murray Gibson

State-of-the-Art 3rd Generation Science in 20 Years?

- *Individual* nanoscale objects can be observed in *real-time*
- Electronic, dynamic and magnetic properties of a *single* nanostructure can be measured
- A few atoms can be chemically identified
- A full dataset for protein structure analysis can be collected in *less than a second*
- X-ray imaging of objects with *nm resolution* is routine

Guiding principles for next 20 years

- The mission of the Advanced Photon Source is to deliver world-class science and technology by operating an outstanding synchrotron radiation research facility accessible to a broad spectrum of researchers
- Need for 3rd Generation Sources will not go away in 20 years, and our user base will grow to ~10,000
 - 4th generation is revolutionary, but does not supercede 3rd generation
- Our users and staff should be connected with the next generation capabilities
 - short pulses (fs), higher coherence.
- APS capabilities must increase continually
 - over 1000 times improvement in "useable" brilliance possible within 20 years
- Maintain strong partnerships (such as CATs), and open access for general users

Defining the state-of-the-art in 3^{rd} generation x-ray sources and science

APS phases of innovation in the next 20 years

- Phase I Maximizing Beamline Operations
- Phase II Maximizing Source Capabilities
- Phase III Next Generation Facility
- Phase IV Super Storage Ring

 Phases II, III and IV each represent at least an order of magnitude increased useable brilliance

APS Upgrades Timeline

Phase I – Maximizing Beamline Operations (2004-2012)

- 10 beamlines to be constructed in the next 8 years (5 years per beamline)
 - more than 1 beamline possible per beamport
- 10 beamlines to be upgraded
 - most likely BES sectors (~26 beamports)
- Construction
 - APS and partner user responsibility
- Operation
 - APS responsibility

Two kinds of beamlines:

a "turnkey"
beamline to
efficiently
collect - SAXS

a dedicated
beamline to
"do experiments" magnetic scattering

Beamline operation support leverages science

Phase II – Maximizing Source Capabilities (2004-2014)

- Innovative undulators, front ends and related components
- Higher brilliance, optimized for application
- Improve front ends and high-heat load optics for higher current operation
 - APS operates at 100mA, would reach 300mA at end of Phase II
- Increasing brilliance by more than an order of magnitude
- Continuing accelerator improvement
 - even greater improvement beam stability

R&D On Insertion Devices

Superconducting Small Period Undulator

1.45 cm period L=2.4 m, N=165 Gap=7 mm Maximum K = 1.4 1.00 cm period L=2.4 m, N=240 Gap = 3 mm Maximum K = 1.17

Variable Polarization Undulator

Electro-magnetic Device

 $\lambda = 16$ cm, L=10 m, N=62

APPLE type PM Device

 $\lambda = 12$ cm, L=10 m, N=82

Assumed APS storage ring parameters: 3.5 nm-rad, 1% coupling, 100 mA

Phase III – Next Generation User Facility (2010-2023) - rebuild all beamlines with improved optics, detectors, automation

Map grain orientation and stress in real samples $10^4~\mu\text{m}^3$ at $1~\mu\text{m}$ resolution takes 54 hours to collect data CCD read-out time = 52 hours

doppler linear act

- Not just remote access and user support
- Precision and control exceeds human capabilities
 - Nanoprobe Scan real and reciprocal space in nanovolumes
 - Adaptive optics with feedback
 - Multi-parameter "smart" scans

Hard X-ra

- To upgrade user capabilities and maximize value of embedded infrastructure and community
- Reduce emittance by at least a factor of 10
 - Less than 0.3 nm-rad effective emittance
 - Very short lifetime
 - Requires refined top-up and new injector
- Beam stabilization at 10nm level
- Requires new storage ring and injector
 - New injector offers 4th generation capabilities

- Flexible lattice, uses existing enclosures
- use existing BM ports
- either
 - two short insertion devices(3 4 meters) / double sector
- or
 - one long insertion device (up to 12 meters)
 - plus one hard bending magnet source

• Fast injection, low emittance

new injector needed...

- Offers 4th gen.
 - plus new use of existing injectors (UV, IR)

PARAMETER	VALUE	UNITS
General		
Total length	600	m
Cryomodules	34	
Energy gain per module	240	MeV
Total beam energy	8.16	GeV
Average gradient	13.6	MV/m
RF system		
Operational frequency	1.3	GHz
Average beam power	800	kW
Beam		
Charge per bunch	1	пC
Bunches per macropulse	1	
Normalized RMS emittance	14	μm
RMS bunch length		
At injector	10	ps
At exit of linac	< 1	ps
Macropulse repetition rate	100	Hz

ry Linac parameters

Conclusion

- APS today
 - Users, Beamlines, Machine
- Current Activities
 - More responsibility for beamline operation
 - Retain partnerships
 - Evolve more specialized beamlines
 - Provide more user support
- 20-year Plan for the APS
 - Phased upgrade plan offers ~4 orders of magnitude performance improvement
 - Phases I and II strongly endorsed by DOE-BES
- Close interactions between sources should be fostered

